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Abstract

In 1994, B�erenger [Journal of Computational Physics 114 (1994) 185] proposed a new layer method: perfectly

matched layer, PML, for electromagnetism. This new method is based on the truncation of the computational domain

by a layer which absorbs waves regardless of their frequency and angle of incidence. Unfortunately, the technique

proposed by B�erenger (loc. cit.) leads to a system which has lost the most important properties of the original one:

strong hyperbolicity and symmetry. We present in this paper an algebraic technique leading to well-known PML model

[IEEE Transactions on Antennas and Propagation 44 (1996) 1630] for the linearized Euler equations, strongly well-

posed, preserving the advantages of the initial method, and retaining symmetry. The technique proposed in this paper

can be extended to various hyperbolic problems.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

The numerical study of wave propagation problems in unbounded domains requires to create a finite

computational region and thus the introduction of an artificial boundary. Several methods have been
proposed to reduce the problem to a bounded domain. Some of them have an empirical origin: the ab-

sorbing layers methods, others are based on a theoretical approach: the integral equations and the absorbing

boundary conditions.

The strategy of absorbing boundary conditions consists in imposing on the artificial boundary a dif-

ferential operator, thereby local, to create a finite computational region. These methods have been widely

studied by mathematicians [10] for different kind of problems (see [11,28] in fluid dynamics); one of the

disadvantages of these methods remains the corner problem for which there is no general theory and their

implementation is quite intricate.
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The integral equation methods consist in reducing the infinite domain into a bounded one, replacing the

outer problem by boundary elements formulation (on the artificial boundary) based on an integral rep-

resentation of the exact solution in the exterior. This method gives rise to an exact and global operator
which leads to large full matrices.

The layer or sponge methods consist of surrounding the domain of interest by a layer. This layer should

be designed such that it produces as low reflection as possible and the waves are absorbed in the layer.

Furthermore to save computation, it should be made thin.

In practice, defining the layer can be very involved as it is very much depending on the frequency of the

incoming signal. This explains why layer methods have not been very much used. More evolved models

have been proposed (coupling layers and absorbing boundary conditions) [15], but the increase of com-

plexity lessens the interest of these methods.
B�erenger�s work [4] has renewed the interest in these layer methods; the B�erenger perfectly matched

layer, PML, has many attractive features: it absorbs waves of any wavelength and any frequency without

spurious reflection; moreover, the corner problem is easily solved by a wise choice of the layer parameters.

Finally, it is very easy to integrate into an existing code.

Unfortunately, as applied to the Maxwell system, the original method leads to a system which has lost

the most important properties of the Maxwell system: strong hyperbolicity and symmetry.

We propose in the last part an algebraic technique leading to a new PML model which is strongly well-

posed and preserves the symmetry.
2. The classical layer technique

The methods of layers consist in surrounding the domain of interest (where we want to compute the

solution) with an absorbing layer. This layer must be such that the transmission of a wave propagating

from the domain of interest into the layer is reflectionless.

These layer techniques are often inspired by well-known physical models (soundproof rooms of acoustics
laboratories). As an example, we first present some models for the wave equation in two dimensions of

space. These examples, although simple, highlight the power and the limitations of the classical approach.

We summarize here some of the results by Israeli and Orszag [15].

We consider the wave equation in two dimensions

o2u
ot2

� Du ¼ 0: ð1Þ

A simple model has been written in [15] by adding a friction term

o2u
ot2

þ rðxÞ ou
ot

� Du ¼ 0: ð2Þ

In such medium, for r > 0, the energy decreases: it is a lossy medium.

More precisely, we consider the case of a propagation in the half space x < 0, and we construct the layer

of width d on the right of the domain. The problem is written as

o2u
ot2 þ rðxÞ ou

ot � Du ¼ 0; ðx; yÞ 2� �1; d½�R

ut¼0 ¼ u0; ou
ot

� �
t¼0

¼ u1;
uðd; y; tÞ ¼ 0;

8<
: ð3Þ

where rðxÞ vanishes for x < 0 and the initial data are supported in R� � R. In the domain of interest (here

the half space x < 0) we recover the classical wave equation. The model is valid if the layer does not
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generate reflections for a wave crossing the interface between the domain of interest and the layer.

Therefore, the choice of the dumping factor r is paramount. Moreover, the decay of the wave in the layer

must be sufficiently significant so that the Dirichlet 1 condition imposed on the exterior boundary of the
layer does not generate important reflections (see also [7]).

The plane wave analysis gives a more precise idea of the good choice of the damping factor. So let

ui ¼ eiðkxxþkyy�xtÞ; kx=x > 0 be an incident plane wave in � �1; 0½�R; with the dispersion relation

k2x þ k2y ¼ x2. The solution of (3) is given by

u ¼ eiðkxxþkyy�xtÞ þ Reið�kxxþkyy�xtÞ in � �1; 0½�R;
u ¼ T1eiðk

r
x xþkyy�xtÞ þ T2eið�krx xþkyy�xtÞ in �0; d½�R;

k2x þ k2y ¼ x2; ðkrx Þ
2 ¼ k2x þ ixr;

kx
x > 0; krx 2 C;

Rkrx
x > 0

8>><
>>: ð4Þ

with

R ¼ R0þRd
1þR0Rd

; R0 ¼ kx�krx
kxþkrx

; T1 ¼ 1þR
1þRd

;

T2 ¼ RdT1; Rd ¼ �e2ik
r
x d:

(
ð5Þ

The goal now was to choose the optimal damping factor r to make the module of R as small as possible
independently of the frequencies and the angle of incidence. First, let us expand the reflection coefficient in

the form

R ¼ R0 þ RdðR2
0 � 1Þ

X
nP 0

ðRdR0Þn; ð6Þ

R0 is the part of the reflection coefficient at the entrance of the layer (due to the change of medium) whereas

Rd is the part due the Dirichlet condition imposed on the exterior boundary of the layer.

If r is too large then R0 is large too. In fact the incident wave sees a brutal change of the medium�s
characteristics (r jump from zero to a large value) leading to spurious reflections.

In the same manner, when r is too small, Rd becomes significant: the wave arriving on the exterior

boundary is not sufficiently absorbed, the spurious reflections are then due to the Dirichlet condition im-
posed on this boundary.
3. A well-posed PML model

Although they are easier to implement than the absorbing boundary conditions, the classical layer

methods have not often been used because of the inconveniences seen before.

In [4] B�erenger proposed a new layer method, perfectly matched layer, for electromagnetism. The original
B�erenger technique has been extended to various hyperbolic problems [2,5,8,14,17–22].

In [14] the author presents the PML model obtained by the B�erenger approach for the linearized Euler

equations; as shown in [14] this model presents attractive properties that the theoretical reflection coefficient

at an interface between the domain of interest and the PML layer is zero for all frequencies and angles of

incidence. Moreover, the wave is exponentially decaying in the layer which allow to impose a Dirichlet

condition on the external boundary. However, the time-domain model obtained by the B�erenger approach
presents some inconveniences; unlike the original system the new one is only weakly hyperbolic and we have

lost the symmetry [2].
1 To keep the model as simple as possible.
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Various PML models have been proposed to circumvent the problems mentioned above; in [2,12], the

authors (following the approach developed for electromagnetism in [1]) modify the Euler equations by

introducing low-order terms, obtaining by construction a well-posed model. We propose an algebraic
technique leading to a PML model, strongly well-posed preserving the advantages of the initial method and

retaining symmetry. Moreover, this model uses primitive variables unlike the B�erenger model. In fact (for

the choice corresponding to N diagonal, see below) the model obtained is identical to the model obtained

for frequency domain FEM in [25] and also for FDTD by Gedney in [9] (also Chapter 5 in [26]). Our model

is similar to the model obtained in [12], a detailed analysis can be found in [1]. However, the approach used

is radically different; unlike the model proposed in [12], which is based on a modification of the Euler

equations, ours is based on the B�erenger technique, thus this method can be generalized to other hyperbolic

problems [21].
We first define a PML medium.

Definition 3.1. For a first order hyperbolic system, Lu ¼ 0; we have the following definition:
• A layer model for the problem Lu ¼ 0 in � �1; 0� � R is such that

Lru ¼ 0 in � �1; d� � R;
Lru ¼ Lu in R� � R:

�

• A layer model is a PML model if
s Reflectionless transmission between the domain of interest and the layer regardless frequency and an-

gle of incidence.

s Exponential decay of the solution in the layer.

We shall adopt the above definition in all the sections below.

3.1. The quiescent free-stream

We start from the time-harmonic unsplit model

ix/þ Sx A
o/
ox

�
þ SyB

o/
oy

�
¼ 0 ð7Þ

with

Sx ¼
ix

ixþ r1ðxÞ
and Sy ¼

ix
ixþ r2ðyÞ

:

This model preserves all the properties of the B�erenger model: reflectionless interface between two PML

medium provided that r1 and r2 are well chosen, exponential decrease of the solution in the layer (see [6]).

In order to obtain a well-posed time-domain PML model, we rewrite the spatial operator SxAox þ SyBoy
using the original operator.

Lemma 3.1. There exist two invertible operators, M and N, such that

SxAox þ SyBoy ¼ MðAox þ BoyÞN ð8Þ

which furthermore have the properties

AoxN þ BoyN ¼ 0 and lim
r1;r2!0

N ¼ I : ð9Þ
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Proof. First, we seek all invertible operators M and N such that

MAN � SxA ¼ 0;

MBN � SyB ¼ 0:
ð10Þ

Since M and N are invertible, we can rewrite (10) as follows:

AN � SxM�1A ¼ 0;

BN � SyM�1B ¼ 0:
ð11Þ

Since kerðAÞ ¼ vectðe2Þ, this implies that Ne2 belongs to kerðAÞ, or Ne2 ¼ ke2. In the same way, since

kerðBÞ ¼ vectðe1Þ we must have Ne1 ¼ le1; where ðeiÞ denotes the canonical basis of R3.

We deduce the general form of N:

N ¼
l 0 n13
0 k n23
0 0 n33

0
@

1
A:

We can note that if ðM ;NÞ is a solution of (10), then ðtN ; tMÞ is a solution of (10), hence

M ¼
m11 0 0
0 m22 0

m31 m32 m33

0
@

1
A

thus, using Ne2 ¼ ke2, we have lMe3 ¼ Sxe3, and in the same manner Ne1 ¼ le1 gives lMe3 ¼ Sxe3.
Finally, we find the general form of M and N solution of (10)

N ¼
SxS�1

y k 0 n13
0 k n23
0 0 n33

0
@

1
A and M ¼

Sxn�1
33 0 0

0 Syn�1
33 0

�k�1n13Syn�1
33 �k�1n23Syn�1

33 k�1Sy

0
@

1
A: ð12Þ

For simplicity we choose here N to be diagonal

N ¼
S�1
y 0 0

0 S�1
x 0

0 0 1

0
@

1
A and M ¼

Sx 0 0

0 Sy 0

0 0 SxSy

0
@

1
A:

This choice implies that (9) is satisfied.

Using the previous lemma, (7) becomes

ix/þMðAox þ BoyÞðN/Þ ¼ 0

and the change of unknown ~/ ¼ N/ gives

ixM�1N�1~/þ ðAox þ BoyÞð~/Þ ¼ 0:

In order to establish the time-dependent model, we start by writing the operator ixM�1N�1 in the form

ixM�1N�1 ¼ ix
S�1
x Sy

SxS�1
y

S�1
x S�1

y

0
@

1
A ¼ ixI þ C þ RUx ð13Þ

with
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C ¼
rx � ry

ry � rx

rx þ ry

0
B@

1
CA; R ¼

ryðry � rxÞ
rxðrx � ryÞ

�rxry

0
B@

1
CA and

Ux ¼
ðixþ ryÞ�1

ðixþ rxÞ�1

ðixÞ�1

0
B@

1
CA:

Finally, the time-harmonic model becomes

ix~/þ C~/þ RUx
~/þ ðAox þ BoyÞð~/Þ ¼ 0: � ð14Þ

Remark. The new unknown ~/ is equal to the original one, /, in the domain of interest (i.e. when

rx ¼ ry ¼ 0). Moreover, when transmitted to the PML the new unknown ~/ does not ‘‘see’’ a contrast

between the two medium (due to limr1;r2!0 N ¼ I). Finally, this change of unknown can be interpreted as a

complex change of basis (SxA ¼ MAN ) in agreement with the interpretation given in [23] of the B�erenger
layer.

By an inverse Fourier transform of (14), we obtain the time-domain model (where K �t ~/ represents the

convolution in time)

ot~/þ C~/þ RK �t ~/þ ðAox þ BoyÞð~/Þ ¼ 0 ð15Þ

with

K ¼
e�ry t

e�rxt

1

0
@

1
A: ð16Þ

The system above is not local in time. Increasing the number of unknowns (this is a classical technique in

the study of dispersive materials [26]), we localize it by introducing a new unknown, T, which is solution of

an ordinary differential equation, it then becomes

ot~/þ C~/þ RT þ ðAox þ BoyÞð~/Þ ¼ 0;

otT þ DT � ~/ ¼ 0

�
ð17Þ

with

D ¼
ry

rx

0

0
@

1
A ð18Þ

or

otUþ ðCþAox;oy ÞU ¼ 0; ð19Þ

where we have set

U ¼
~/
T

� �
; C ¼ C R

�I D

� �
and Aox;oy ¼

Aox þ Boy 0

0 0

� �
: ð20Þ

At this point we can note that this model is the model obtained in [9] (and in the frequency domain in [25]).
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Remark. In [24] the authors introduce a novel method which is based on a more general form of the

stretched coordinates and on a recursive convolution; they also describe the discrete version of this con-

volutional PML. It would be very interesting to study the models obtained by the technique presented

above in the case of more general form of the stretched-coordinate.

We can now state and prove our first result.

Theorem 3.1. The model given by (19) is a PML model for the linearized Euler equations. Moreover,

the Cauchy problem associated to this model is strongly well-posed and the solution is as smooth as the

data.

Proof. The Cauchy problem is

otUþAox;oyUþ CU ¼ 0;
Uðt ¼ 0Þ ¼ U0;

�
ð21Þ

where Aox;oy and C have been defined in (20). The principal symbol of (21) is given by

Anx þ Bny 0

0 0

� �
: ð22Þ

Since the principal symbol is symmetric, the system (21) is strongly hyperbolic and therefore well-posed

[16]. �

Remark. In practice it is preferable to choose a damping factor rx which does not become rapidly signif-

icant (for example parabolic) otherwise the wave crossing the interface between the mediums sees an

abrupt change of the medium�s characteristics leading to spurious reflection, this result is also valid for all

layer methods. However in the PML medium, thanks to the exponential decay of the wave, this is not

restrictive.

3.2. A family of well-posed PML models

Let us come back to the general form of M and N ; as seen before the choice of a diagonal form for N
is only for ‘‘morally’’ considerations. Indeed, using the general form of M and N the previous lemma

gives

oxn13 þ oyn23 ¼ 0;
oxn33 ¼ oyn33 ¼ oyk ¼ 0;
oxðSxS�1

y kÞ ¼ 0

8<
: ð23Þ

which leads to

n33 ¼ 1 and k ¼ S�1
x :

To satisfy the first equations of (23) we can choose (for example)

n13 ¼ aðyÞðixÞ�1
and n23 ¼ bðxÞðixÞ�1

; ð24Þ

where a and b are equal to zero in the domain of interest in order to satisfy the lemma of the previous

section (we can choose a ¼ ry and b ¼ rx. Following the previous study we obtain various PML models; for
example choosing a ¼ 0 gives
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N ¼
S�1
y 0 0

0 S�1
x bðxÞðixÞ�1

0 0 1

0
@

1
A and M ¼

Sx 0 0

0 Sy 0

0 �bðxÞðixÞ�1SxSy SxSy

0
@

1
A;

then the change of unknowns ~/ ¼ N/ gives

ixM�1N�1~/þ ðAox þ BoyÞð~/Þ ¼ 0;

which leads to the time-harmonic model

ix/þ C2
~/þ R1Ux

~/þ R2Vx~/þ ðAox þ BoyÞð~/Þ ¼ 0; ð25Þ

where Ux is given in the previous section and

C2 ¼
rx � ry 0 0

0 ry � rx �bðxÞ
0 bðxÞ rx þ ry

0
@

1
A; Vx ¼

0 0 0

0 0 0

0 0 ðixþ rxÞ�1

0
@

1
A:
R1 ¼
ryðry � rxÞ 0 0

0 rxðrx � ryÞ 0

0 bðxÞðry � rxÞ b2ðxÞr�1
x ry � rxry

0
@

1
A; ð26Þ
R2 ¼
0 0 0

0 0 �bðxÞðry � rxÞ
0 0 b2ðxÞr�1

x ðry � rxÞ

0
@

1
A:

Finally, this model is given by (using an inverse Fourier transform)

ot~/þ C2
~/þ R1K �t ~/þ R2K2 �t ~/þ ðAox þ BoyÞð~/Þ ¼ 0; ð27Þ

where K is defined in (16) and K2 ¼ diag½0; 0; e�rxt�:
Increasing the system above in the same way gives

otUþ ðCþAox;oy ÞU ¼ 0; ð28Þ

where we have set

U ¼
~/
T1
T2

0
@

1
A; C ¼

C2 R1 R2

�I D 0

�I 0 D2

0
@

1
A; Aox;oy ¼

Aox þ Boy 0 0

0 0 0

0 0 0

0
@

1
A: ð29Þ

We can now state and prove that this model is again a well-posed PML model

Theorem 3.2. The model given by (28) is a PML model for the linearized Euler equations. Moreover, the

Cauchy problem associated to this model is strongly well-posed and the solution is as smooth as the data.

Proof. Consider the Cauchy problem associated to this model

otUþAox;oyUþ CU ¼ 0;
Ut¼0 ¼ U0;

�
ð30Þ
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where Aox;oy and C have been defined in (29). The principal symbol of (30) is given by

Anx þ Bny 0 0

0 0 0

0 0 0

0
@

1
A ð31Þ

The well-posedness is obtained exactly as in (21).

To establish now the PML properties of this model (according to the definition (3.1)). Following the

analysis in [1], we shall consider the propagation of a plane wave in the two-dimensional case and for a half

space (the general case can be analyzed using separation of variables); we consider a PML of thickness d
ð0 < x < dÞ.

Let

/� ¼ /�
0 e

�iðkxxþkyy�xtÞk2x þ k2y ¼ x2

be an incident plane wave traveling from the domain of interest, X� ¼ R2
fx<0g, where it satisfies the classical

Euler equations to a PML medium Xþ ¼ R2
fx>0g governed by the previous model. We shall seek / in Xþ in

the form

/þ ¼

uþðxÞ
vþðxÞ
pþðxÞ
Tþ
2 ðxÞ

Tþ
3 ðxÞ

0
BBBB@

1
CCCCA � e�iðkyy�xtÞ;

where we have set ðT1Þþ2 ¼ Tþ
2 and ðT1Þþ2 ¼ Tþ

3 :
We can see that in the PML medium, Xþ; uþ; vþ and pþ satisfy

uþ ¼ ðixþ rxÞ�1
oxpþ;

vþ ¼ � iky ðixþrxÞ
ðixÞ2 pþ þ bðxÞ

ix pþ;

oxuþ ¼ ðixþ rxÞpþ � ky
x

� �2

ðixþ rxÞpþ:

8>><
>>: ð32Þ

Combining these equations yields the second order ordinary differential equation for pþðxÞ

dxððixþ rxÞ�1dxpþÞ �
k2x
x2

� �
ðixþ rxÞpþ ¼ 0 ð33Þ

which has the general solution

pþðxÞ ¼ j1 exp
kx
x

Z x

0

ðix
�

þ rxðnÞÞ dn
�
þ j2 exp

�
� kx

x

Z x

0

ðixþ rxðnÞÞ dn
�
: ð34Þ

Therefore, we deduce the expressions for the other components

uþðxÞ ¼ kx
x j1 expðkxx

R x
0
ðixþ rxðnÞÞ dnÞ � j2 exp � kx

x

R x
0
ðixþ rxðnÞÞ dn

� �� 	
;

vþðxÞ ¼ � kx
x

ixþrx
ix þ bðxÞ

ix

� �
� j1 expðkxx

R x
0
ðixþ rxðnÞÞ dnÞ þ j2 exp � kx

x

R x
0
ðixþ rxðnÞÞ dn

� �� 	
:

(

Imposing continuity of the fields (across the interface x ¼ 0), i.e. p� ¼ pþ and u� ¼ uþ, we obtain j1 ¼ 0

and j2 ¼ 1 (v, T2 and T3 are then also continuous). Finally, p is given by

p ¼ e
�kx

x

R x

0
rxðnÞ dn

e�iðkxxþkyy�xtÞ: ð35Þ

Thus, we have an exponential decay of the wave magnitude.
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More generally one can choose n13 ¼ oyw; n23 ¼ oxw and then adjust w to make the model perfectly

matched. A more detailed study is in progress. �

Remark. In Lemma 3.1 the condition AoxN þ BoyN ¼ 0 is not necessary for the well-posdness. Indeed, if N
does not satisfy this condition, we will have the zero order term AðoxNÞ þ BðoyNÞ (assuming r are C1ðRÞ:
One may try to construct a PML relaxing this condition.
4. The convecting case

In this part, we shall consider the two-dimensional compressible Euler equations, linearized around a

constant state ðU ; V Þ 6¼ ð0; 0Þ; the method described for the quiescent case needs to be modified. In the

convecting case, the lemma (9) is no longer true, more precisely there are no invertible operators M and N

such that

MAN � SxA ¼ 0;

MBN � SyB ¼ 0
ð36Þ

to see this, suppose for example U 6¼ 0, A is then invertible and (36) implies

SxM BA�1 � SyBA�1M ¼ 0: ð37Þ

First, note that if B is also non-singular, the result yields immediately (taking the determinant of the above

expression). If B is singular, let v be an eigenvector of M associated to the eigenvalue k, (37) leads to

MBA�1v ¼ kSy
Sx

BA�1v

thus for any positive n, kðSy=SxÞn is an eigenvalue of M, which is impossible except if Sx and Sy are fixed

equal to the complex roots of unity. In fact, in this case we can take M ¼ diag½k; kðSy=SxÞ; kðSy=SxÞ2�, where
ðSy=SxÞ is a cubic root of unity. However, this is not possible (r will depend on x). Finally, we obtain k ¼ 0

and M is not invertible.
To overcome these problems we shall transform the Euler equations in the convective case into a system

similar to the aeroacoustic one (for which lemma (9) is true).

For this, we can use the change of variables

X ðtÞ ¼ xþ Ut and Y ðtÞ ¼ y þ Vt

however this transformation leads to a moving PML layer. One can use other changes of variables, for

example as in [3] or [2] i.e. (where M is the Mach number)

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

p
x; g ¼ y and s ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

p
t þMn: ð38Þ
5. Numerical results

To verify the efficiency of our PML models, we present numerical results on a benchmark problem in

computational aeroacoustics [13,14]. The initial condition is in the isentropic case an acoustic pulse cen-

tered at point xa,
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P0 ¼ q0 ¼ e�ðln 2Þjx�xa j2
9 ; u0 ¼ v0 ¼ 0:

The computational domain is ½�60; 60� � ½�60; 60�, the domain of interest is ½�50; 50� � ½�50; 50� sur-
rounded by a layer of thickness N ¼ 10. The damping factors riðxiÞ are chosen (for both simulation) as

riðxiÞ ¼ r0ðdiðxiÞ=DiÞ3, where Di is the thickness of the layer in the xi direction and diðxiÞ is the distance from
the interface to the point in the layer. According to the results observed in [14], we take r0D=N ffi 8.

The scheme is a fourth order Runge–Kutta in time, and a seven point finite difference scheme in space.

We present the results for the quiescent medium case. It is shown that the field is well absorbed by the

PML layer (the wave arrives at t ¼ 30 in the PML) with no noticeable reflection. The Dirichlet condition
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Fig. 1. Pressure contours at t ¼ 10.
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Fig. 2. Pressure contours at t ¼ 30.
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Fig. 3. Pressure contours at t ¼ 40.
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imposed on the exterior boundary of the PML does not generate spurious reflection and the wave is totally

absorbed at t ¼ 100.

To measure the reflection due to the PML, the solutions are compared with a reference solution (Sol-

Ref) obtained by computing the flow in a much larger domain with the same numerical algorithm

(therefore, we compute exactly the ‘‘effect’’ of the PML).

We shall also plot the rate of absorption, s, given by

s ¼ jPSol-Ref � Ppmlj
jPSol-Ref j

� 100: ð39Þ

In Figs. 1 and 2 we plot the pressure contours of the solution, respectively, at t ¼ 10 and t ¼ 30; time

t ¼ 30 is interesting as the wave arrives to the left PML layer with no spurious reflection (see Figs. 3
and 4).
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Fig. 4. Pressure contours at t ¼ 50.
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Fig. 5. Pressure contours at t ¼ 60.
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The wave progresses without reflection and has not yet reached the external boundary. In Figs. 5 and 6

the wave reaches the external boundary (where a Dirichlet boundary condition is imposed); as can be seen

the corner does not generates problems. These two snapshots of the pressure show how well the outgoing

waves are absorbed (see Figs. 7 and 8), we can note that the PML layer affects a small region near the
interface (this is due to the numerical scheme, described in [27]).

The model given by (28) gives similar results (corresponding to the simplest model a ¼ 0; b ¼ 1). We can

note that the model is less absorbing than the classical one. Moreover, we observe a small discretization

error (Fig. 9) due to choice of b.
The wave progresses without reflection and has not yet reached the external boundary.

In Figs. 5 and 6 the wave reaches the external boundary (where a Dirichlet boundary condition is im-

posed); as can be seen the corner does not generates problems (see Figs. 10–12).
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Fig. 6. Pressure contours at t ¼ 80.
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Fig. 7. Pressure value along y ¼ 0 at t ¼ 30.
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Fig. 8. Pressure value along y ¼ 0 at t ¼ 50.
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Fig. 9. Pressure contours at t ¼ 40.
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Fig. 10. Pressure contours at t ¼ 50.
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Fig. 11. Pressure contours at t ¼ 60.
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6. Conclusion

The technique proposed in this section, to obtain a well-posed PML model for Euler equations, relies on

an algebraic lemma leading to a strongly hyperbolic system.
The model obtained is identical to the model obtained in [9,25] however the derivation presented here

can be extended to various hyperbolic systems.

This method preserves all the advantages of the B�erenger model while retaining symmetry. Moreover,

this model uses primitive variables unlike the B�erenger one, thus it is effectively easier to integrate into an

existing code.
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Fig. 12. Pressure contours at t ¼ 80.
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The development of a PML model for a non-constant mean flow remains a significant challenge and is

the subject of current research.
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